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The representations of space groups describe the symmetry of crystal lattice vibrations. These represen- 
tations are presented in a diagrammatic way easily understood by those familiar with International 
Tables for Crystallography. A few diagrams are considered in detail in an effort to bring out the salient 
points. The relevance of plane groups and Shubnikov groups is emphasized, though it is clear that these 
groups in themselves are not sufficient for a complete description of phonon symmetries. The diagram- 
matic description must be considered as complementary to the analytic approach, but unlike the latter 
it is not capable of a thorough description. A table is given for certain space groups which indicates to 
what extent the diagrams can be found useful, encompassing one-dimensional and a limited number of 
two-dimensional representations. Although higher dimensions involve too many problems and must 
be left to the analytic approach, the insight gained by drawing diagrams may prove beneficial. 

Introduction 

This paper introduces a diagrammatic description of 
the symmetries of lattice vibrations, building on the 
crystallographer's extensive knowledge and under- 
standing of space-group diagrams. Whereas a space- 
group diagram represents the time-averaged crystal 
structure symmetry, the diagrams here developed rep- 
resent the symmetries of the possible crystal lattice 
vibrations. For any one space group there are many 
symmetries for the lattice vibrations, and these are 
collectively called the space-group representations. 
These representations do not describe only the lattice 
vibrations, but describe any set of wave functions 
whose averages obey the space-group symmetry, such 
as the electronic wave functions. However, lattice vi- 
brations will be used here as the basic example. 

It has been customary to treat these representations 
algebraically, which is analogous to the algebraic de- 
scription of space-group symmetry given for every 
group in Volume I of International Tables for X-ray 
Crystallography (1952). In these tables a geometrical 
description is given for most of the space groups, but 
eventually the complexity is such that the algebraic 
description alone is given. So it is with the space-group 
representations: a large number of the simpler rep- 
resentations can be adequately described geometrically, 
but a stage comes when the algebraic description alone 
must be used. At this stage, as with the study of space 
groups themselves, a thorough grasp of the scientific 
fundamentals has been obtained. 

Phonons 

A phonon is a quantum of lattice vibration, which is 
a wave travelling through the crystal. The wave is char- 
acterized by a wave vector q perpendicular to the planes 
of constant phase, related to the wavelength 2 by 
Iql~,= 2~, The atoms in one Bravai~ lattice defined by 

the lattice translation vectors zj move with relative 
phases given by the factors 

exp (iq. ~j). 

Furthermore, the phonon will belong to a space-group 
representation R, so that in order to describe the 
phonon both R and q must be given. In some cases 
this is sufficient to identify the phonon, but generally 
there will be more than one phonon of a given R and q. 
This is analogous to the fact that in a crystal structure 
there may be more than one atom in a general or a 
special position. In the space-group diagrams only one 
general position is depicted; likewise in the representa- 
tion diagrams only one general position is shown. 

When there is more than one phonon correspond- 
ing to a certain R and q, then each distinct phonon is 
said to belong to a different branch of the dispersion 
relation. The dispersion relation is the var ia t ion of 
phonon frequencies with q, and as these are essentially 
continuous functions there are continuous branches 
for each occurrence of a representation. The wave 
vector q varies over the whole of the Brillouin zone, 
and a number of diagrams are required to describe the 
symmetries at the special points of the Brillouin zone, 
in contrast to the single diagram for space-group sym- 
metry. 

Phonon symmetry 

A given space group has a certain set of symmetry 
operations. The symmetry operations which a given 
phonon can obey are contained in this set. Some of the 
space-group operations may be obeyed, while others 
may be disobeyed. For phonons of different representa- 
tions different space-group operations will be obeyed 
or disobeyed, and in order to analyse the various pos- 
sibilities we must first classify the space-group opera- 
tions. 

For a wave of a particular q the space-group opera- 
tions can be classified into three types. First we must 
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construct a single plane of constant phase through the 
crystal, perpendicular to q, dividing the crystal into a 
region of advanced phase and a region of retarded 
phase. 

Type 1 
Symmetry elements of type 1 relate atoms all of 

which lie in the plane, and do not relate atoms in one 
region to atoms in the other region. Such elements will 
be rotation axes parallel to q and planes of symmetry 
containing q, where the symmetry planes are either 
mirror planes or glide planes with the glide translations 
perpendicular to q. 

Type 2 
The operation of a symmetry element of type 2 trans- 

forms any atom in the plane of constant phase into 
another parallel plane of constant phase related to the 
initial plane by a fixed phase difference. The action on 
all planes of constant phase is similar, changing the 
phase by a fixed amount. These elements will be screw 
axes parallel to q and glide planes containing q except 
those already classified as type 1. All these elements 
contain a fractional lattice translation, d, and the fixed 
phase difference between planes is q .  d giving a change 
in the wave amplitude by a factor of exp (iq. d). 

Type 3 
All the remaining elements are of type 3, and relate 

atoms in one region to atoms in the other region. The 
atoms so related differ in phase by a factor which 
depends on their positions in the crystal, and therefore 
this phase factor is not constant. The symmetry ele- 
ments will be all inversion centres and inversion axes, 
plus those axes, screw axes, mirror and glide planes not 
of types 1 and 2. 

It must be emphasized that this classification is de- 
pendent on q as the relationship of the symmetry ele- 
ments to the planes of constant phase is of fundamental 
importance. For a symmetry element to be obeyed by 
a phonon it must be of type 1, except in special circum- 
stances to be described later. To illustrate this let us 
consider a phonon which obeys a diad axis. Through 
the crystal there will be a regular array of parallel diad 
axes relating one atom to an array of atoms lying in 
a plane perpendicular to the axial direction. All these 
atoms must move with the same phase for the sym- 
metry to be obeyed, and thus they define a plane of con- 
stant phase. The wave vector must therefore be parallel 
to the diad axis direction, as stated as a condition for 
a symmetry axis to be of type 1. The conditions stated 
for mirror and glide planes to be of type 1 are similarly 
easily verified. 

Elements of type 2 play a special role in that they 
can be 'partially satisfied' by the phonon. As an ex- 
ample let us take a screw diad axis along the crystal 
y axis. The array of parallel screw diads relates atoms 
in one plane perpendicular to the y axis to atoms in a 

parallel plane a distance b/2 away. For this symmetry 
to be obeyed the atoms in these two planes should 
move in phase. For reasons exactly similar to those 
governing the behaviour with respect to the true diad 
axis (type 1), the wave vector must be parallel to the 
symmetry axis, but this produces a change of ½qb in 
phase angle between the two planes considered above. 
Therefore the symmetry cannot strictly be obeyed be- 
cause there is not the required zero phase difference. 
But there is a constant phase difference: so we widen 
the meaning of obey and state that a phonon obeys 
type 2 symmetry if the planes related by the fractional 
lattice translation d differ in phase angle by a constant 
q .  d only. If on the other hand the wave vector is not 
parallel to the symmetry axis, then there can be no 
definite phase relation between these planes, and the 
operation is then defined as type 3. 

There is no way in which type 3 symmetry can be 
obeyed, except for special values of q to be discussed 
later. 

General q 

A wave with a general wave vector may be defined as 
one where all the space-group symmetry operations 
are of type 3. There is therefore no symmetry which the 
phonon can obey, and so all the phonons of a partic- 
ular q belong to the same space-group representation. 
The number of occurrences of this representation is 
equal to 3n, where n is the number of atoms in the 
primitive unit cell. The structure can be thought of as 
n interpenetrating Bravais lattices. A single atom in 
one such lattice has three degrees of freedom of mo- 
tion, but all the other atoms in the lattice must move 
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Fig. 1. The symmetry of the space group P2,/c. The asymme- 

tric unit is represented by a black tetrahedron, and the tetra- 
hedron labelled + is viewed from an angle wher$ only one 
face is visible. 

Fig. 2. The two asymmetric units of the space group P2,/c 
which are related by the screw diad, this being the only 
symmetry element of type 2 for a wave with wave vector q 
along the diad direction. The tetrahedron is now to be inter- 
preted as a general displacement vector for any atom in a 
general position, in the ~ours¢ of such a wave, 
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in accordance with this atom but  with phase angles 
of  q" ~j. The mot ion of  the atoms in the other Bravais 
lattices is quite independent,  giving a total of  3n de- 
grees of  freedom and 3n modes  of  vibration.  This is a 
general result. For  the case under  considerat ion all 
these modes belong to the same representation, but  
for special cases of  q the 3n modes are divided between 
the possible representations. 

Fig. 3. The symmetry element of Fig. 2 now broken. The sym- 
metry symbol now appears white, denoting antisymmetry, 
and the tetrahedron labelled ½ + is also white, signifying that 
the vector it represents is the same as that in Fig. 2, except 
that its sign is reversed. 

f 

f 
(a) 

(b) (c) 

Fig. 4. (a) One branch of a dispersion diagram, showing a 
smooth variation over the Brillouin zone boundary which is 
at the middle. The left side corresponds (say) to the symme- 
tric branch, S, and the right side to the antisymmetric branch, 
,4. (b) Mapping the A branch into the left-hand part of the 
diagram. (c) The composite diagram, showing both the S 
and the ,4 branches. 

Fig. 5. The dispersion curves calculated for anthracene, with q 
along the screw diad axis. This is Fig. 2 of Pawley (1967) un- 
folded to correspond to Fig. 4 (a) above. Note that branches 
of the same representation never cross, though S and A 
branches cross after folding as in Fig. 4 (c). 

q in a special direction 

For  special cases of  q some of  the space-group elements 
belong to type 1 or type 2. At this stage in our argu- 
ment  diagrams become very useful, so we will analyse 
the case of  q along the screw diad of the space group 
P21/c. The symmetry  elements and the general posi- 
tions are combined  in Fig. 1, where black tetrahedra 
are used to denote the general atomic positions. For  
the part icular  q there is no symmetry of type 1, the 
screw diads are of  type 2 and the remainder  are of 
type 3. Thus there are no operations of  types 1 and 2 
relating the atoms marked  by + with those marked  
by - ,  which means  that  these atoms move indepen- 
dently in the wave, their ampli tudes and phases being 
determined by the interatomic forces only. The atoms 
may  therefore be divided into two unrelated sets, those 
marked  with + and those marked  with - .  Because 
the sets are not related by possible phonon  symmetry 
one set may  be omitted from the diagram and we need 
consider only the other set, as in Fig. 2. 

Whatever  is said for one set can be said for the other. 
I f  the atoms of  one set can move in accordance with 
the representat ion R1 so can the atoms of the other set. 
I f  the representat ion R 2 is possible for one set it is also 
possible for the other, but  it is impossible for the atoms 
of  one set to move in accordance with R1 while the 
others obey R 2 in the same mode of  vibration. This can 
be unders tood by realising that  it is not s imply the 
atomic movements  which must  obey the symmetry,  
but  also the interatomic forces. While the atoms of  one 
set move in accordance with RI, the interatomic forces 
alter in accordance with RI and so produce motions 
of  the remaining atoms obeying R~. 

Fig. 1 is drawn with tetrahedra representing the gen- 
eral positions of the space group. Position is a vector 
property, as is displacement.  Consequent ly  the tetra- 
hedra in this figure could represent any vector property, 
and in part icular  they can represent the displacement 
of  the atoms in the general positions of  the space group. 
In Fig. 1 the displacements clearly satisfy the space- 
group symmetry.  Al though there may  be modes of 
vibrat ion which satisfy the space-group symmetry  this 
will not always be the case, and the diagrams must  be 
modified to describe these other phonon symmetries. 

Fig. 2 can now be interpreted as describing the mo- 
tion in a mode  where the screw diad is not broken 
(using 'not  broken '  in the sense already described for 
a type 2 operation). The alternative to retaining the 
symmetry  is breaking it, and this is depicted in Fig. 3. 
The symmetry  element which is broken is drawn white, 
whereas in Fig. 2 it was black. This broken symmetry 
element is now an element of  an t i symmetry  and relates 
a white te t rahedron to a black one. The significance 
of  the white te t rahedron is that  the vector displace- 
ment  that  it would represent if  it were black must be 
reversed in sign and therefore in direction. Either the 
symmetry  or the ant i symmetry  must  be obeyed; there 
is no other choice because a general displacement can 
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be expressed as a linear combination of a symmetric 
and an antisymmetric displacement. This will always 
be the case for symmetry operations of order two, and 
therefore for these cases the 'black and white' sym- 
metry groups are appropriate. 

There are thus two representations for this particular 
q, which can be called symmetric (S, Fig. 2) and anti- 
symmetric (A, Fig. 3). Consider first the S mode. It 
is clear that there must be a phase difference of q .  b/2 
(d = b/2) between the atom marked + and that marked 
+½ as the ½ denotes the translation b/2 of the screw 
diad. There is of course the same phase difference in 
the A mode along with the reversal of sign, though 
sign reversal is equivalent to a phase factor of n. In 
this sense we can argue that the S and A modes are 
similar, differing in the phase factor just mentioned: 
q .  b/2 = qb/2 for S and n + qb/2 = (2n/b + q)b/2 for A. 

q on the zone  boundary  

We now use the fact that for each mode at q there is 
a degenerate mode at - q ;  this is due to time reversal 
symmetry. Thus corresponding to A(q) there is a mode 
A ( - q )  whose phase factor of the previous paragraph 
is (2n/b-q)b/2,  and therefore it is possible to find a 
value of q such that this phase factor is identical to 
that of S(q). The condition is clearly q=n/b, but this 
is the special position on the boundary of the Brillouin 
zone. At this point the phonons belonging to the S 
branches become degenerate with those of the A 
branches. This is a common behaviour whenever there 
are symmetries of type 2: this phase factor caused by 
the glide or screw translations builds up to n/2 at the 
zone boundary, and if we plot the S branch up to the 
boundary and then continue the curve to larger q the 
branch becomes the A branch. This is shown sche- 
matically in Fig. 4 and as an example calculated dis- 
persion curves for anthracene (P21/c) showing this be- 
haviour are given in Fig. 5. 

When there are no type 2 symmetries the behaviour 
at the zone boundary is different, and often it is pos- 
sible to deduce what happens from diagrams. Unfor- 
tunately this aspect of the work cannot be complete, 
for at some very special points analysis becomes very 
difficult. This is often caused by the fact that our clas- 
sification of the symmetry elements into three types 
breaks down in ways similar to that at q=0 ,  as we 
shall see. 

The  U-po int  q = 0 

The various points and directions in the Brillouin 
zones have been assigned letters from the Greek and 
Roman alphabets (Koster, 1957). F denotes the point 
q=  0, where the phonons have infinite wavelength. In 
this case it is obvious that planes of constant phase 
do not exist as all atoms related to each other by any 
lattice translation move in phase. Our classification of 
symmetry elements becomes irrelevant, as all elements 
are of type 1. Therefore modes may exist which do not 

break elements such as inversion and inversion-rota- 
tion, whereas other modes exist which are antisym- 
metric with respect to these operations. The diagrams 
for the various modes are generally simple to draw as 

lal 

(b) 

: ~ O " ~ " ' "  ..", - 

" ~ 7 - ,  --.o 

(c) 

° 

, .  ° 

(d) 

Fig. 6. The four representations for P2t/c at q=0, the F point. 
(a) Fully symmetric. (b) Screw diad symmetric. (c) Inversion 
centre symmetric. (d) Glide mirror symmetric. 

" I "° " 

. . . . . . . .  ~ . . . . .  ~ . ~ _ ~  

½+ ½ 

'T . . . .  / . . . .  o O / 

Fig. 7. Diagram for the space group Pmnb. 

Fig. 8. Naming of the tetrahedra of Fig. 7 to correspond with 
the point-group symmetry operations. 
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in Fig. 6 for P21/c. Fig. 6(a) shows the fully symmetric 
mode, Fig. 6(b) is symmetric with respect to the screw 
diad 2~, and Fig. 6(c) and (d) are symmetric with respect 
to the inversion centre J and glide mirror c respectively. 
Denoting the Unit operation E we can compile Table 1 
which is called the character table for the point group 
2/m (Koster, 1957). An entry of 1 under an operation 

Table 1. Character table for the point group 2/m 
Operations 

E 21 J C(m) Fig. 6 

Modes 1 1 - 1  - 1  . . . .  (b) 
1 - - 1  1 - - 1  . . . .  (c )  

F~ ] - ] - 1 ] . . . .  ( d )  

'" ~ ~ ~ ~  " . . . .  + ' I T  . . . . .  5 7 '  
. . . .  , . ~ . . . , , ~ . . - , ~ ~  J ' .  . . . .  

• ~ "  - "  " : ' t  ,.__.1._.:.+~_ ~ ~,, 

'I_ 4- .I,' 

IL 4" 

, ° .  

, . b? 

. . . . . .  in.~--.~ ~ 

(a) (b) (c) 

Fig. 9. The four representations for branches along each of the three orthorhombic directions. 

(a) (b) (c) 
Z'I Jl  Ai 
£., 6, A, 
£'3 J 3  A~ 
~4 J4 A4 
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denotes that this operation is symmetric for the mode 
being described and - 1 denotes an antisymmetric rela- 
tionship. In this way point-group character tables are 
much used, especially in optical spectroscopy where 
the modes at the F point are studied. 

C o m p a t i b i l i t y  

The branches with q parallel to the y axis in our 
example P2x/C receive the letter A, so they may be 
called As and AA. What happens to these branches at 
the special points F and Y (the zone boundary point)? 
The Y point has already been discussed, as this is where 
As and AA become degenerate. There is only one rep- 
resentation at Y so no subscript is necessary. This fact 
can be deduced by observing that there are no type 3 
symmetries which become operative at Y, though an 
example where this does happen will appear later. 

It is easy to see from the diagrams what happens 
at F. The tetrahedra of Fig. 2 are reproduced (with 
rearrangement) in Fig. 6(a) and (b) while those of Fig. 3 
are reproduced in Fig. 6(c) and (d). Thus As is com- 
patible with Fa and F~ while AA is compatible with F~ 
and Fd. All this is expressed diagrammatically: 

Fa 
\ 

As 

r~ 
Y 

\ 
AA 

/ 

E x a m p l e :  Pmnb 

This space group was analysed as it is the symmetry of 
P4S3 in the lower phase (Leung, Waser, van Houten, 
Vos & Wiegers, 1957) and undergoes a plastic crystal 
phase transition. The space-group symmetry diagram 
is Fig. 7, where the eight tetrahedra correspond to the 
point-group operators as shown in Fig. 8. Using the 
character table (Table 2) the drawing of diagrams for 
the modes at F becomes very simple. 

Table 2. Character table for point group mmm 

E 2~ 2~. 2z J mx my mz 

A~ 1"1 
BI~ F2 
B2g 1"3 
B3~ F4 
A,, Fs 
BI~ F6 

1 1 1 1 1 1 1 1 
1 1 - I  - 1  1 ! - 1  - 1  
1 - 1  1 - 1  1 - 1  1 - 1  
1 - 1  - 1  1 1 - 1  - 1  1 
1 1 1 1 - 1  - 1  - 1  - 1  
1 1 - 1  - 1  - 1  - 1  1 1 
1 - 1  1 - 1  - 1  1 - 1  1 
1 - 1  - 1  1 - 1  l 1 - 1  

Now consider the three symmetry directions in turn. 

q direction Corresponding operation 
of point group 

Z, q along x axis 
Type 1: glide plane b mz 
Type 2: screw diad along x 2,, 

diagonal glide n my 

A, q along y axis 
Type 1 : mirror plane m mx 
Type 2: screw diad along y 2y 

glide plane b mz 

A, q along z ax& 
Type 1 : mirror plane m rn~ 
Type 2: screw diad along z 25 

diagonal glide n m r 

Each direction yields a set of four diagrams, Fig. 9, 
in which the tetrahedra corresponding to type 3 opera- 
tions do not appear. If Fig. 7 were drawn according 
to the eight representations Fi the compatibilities 
would be obvious; an alternative way of determining 
compatibilities is to write down that part of the char- 
acter table relevant to those symmetry operations of 
types 1 and 2 omitting those of type 3. Thus for Z we 
get Table 3. 

Table 3. Part o f  the character table for Pmnb 

F3 

/'6 
F~ 
/'8 

E 2x my mz compatible with 

1 1 1 1 Z1 
1 1 --1 --1 Z2 
1 --1 1 --1 Xa 
1 - 1  - 1  1 2:4 
1 1 --1 - 1  X2 
1 1 1 1 271 
1 - 1  - 1  1 z'4 
1 - 1 1 --1 Z3 

Similarly we get the compatibilities for A and Am, 
which are shown schematically: 

-)z1 

On this diagram are shown the compatibilities at the 
zone boundary points Y(q = n/b) and Z(q--  re~c), and 
to demonstrate how these have been determined let us 
examine the point X, q=~z/a along the x axis. There 
are four tetrahedra to be considered, corresponding to 
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E, 2x, m,, m~ of Fig. 8. Because there is a translation ½a 
between the tetrahedra E & m~ and tetrahedra 2x & 
m~, a phase difference between these pairs builds up 
as q increases from F along all four branches. How- 
ever, no phase difference can build up between E and 

o o 

. ~ -  O o 

. ~  ."  " ,  ¶< 

" • . 

Fig. 10. The two representations for PT at the F point. 

o 

• , : "  . . . . .  " 

Fig. 11. A representation for P i  for q midway between two 
reciprocal-lattice points. 

j 
,$ $ 

Fig. 12. The space group Pccm and the labelling of the tetra- 
hedra. 

! 

mz (or between 2x and my) as these pairs are related by 
type 1 symmetry. As q varies along the Z1 branch E 
and mz remain in phase just as they do in Z4. The 
phase difference between this pair and 2x & my is zero 
at F and increases to rr/2 at X, and continuing past 
Xthe phase difference increases further as the Z1 branch 
has now become the Z4 branch. 

This behaviour is exactly similar to that of the As and 
AA branches in the preceding monoclinic example, and 
therefore the Z1 and 2:'4 branches become degenerate 
at X. Similarly Z2 and ,~V" 3 become degenerate at X, 
shown schematically: 

The degeneracies at Y and Z can be explained by a 
similar argument. It becomes increasingly difficult to 
explore the rest of the surface of the Brillouin zone 
with simple diagrams. One is tempted to draw diagrams 
with phase-factor labels on them, but this is verging on 
the algebraic method which we are trying to complement. 
However there are some more results which can emerge 
from our analysis. 

Space group P1 

This is chosen for its simplicity. For a general q there 
are no operations of types 1 or 2 and so there is only 
one representation. At the F point of course there are 
the two representations of Fig. 10. Away from F the 
inversion is of type 3, but this fails to have its usual 
significance at the X point as shown by Fig. 11. The 
X point is on the Brillouin zone boundary half-way 
towards (100) with q parallel to the x* axis, (we should 
throughout have used reciprocal axes when describing 
the direction of q, but this is the first place where the 
distinction is necessary). At X there must clearly be 
two representations, Xs and XA, where the antisym- 
metric mode is depicted in Fig. 11. As the space group 
is so simple it is obvious that half-way between any 
two reciprocal-lattice points the same separation into 
two representations will occur, though the pattern of 
inversion and anti-inversion operations will differ. 
These are the only places where there is more than one 
representation of P ] ,  and so PT is completely solved. 

The inversion operation 

In both PT and Pmnb space groups the centre of in- 
version J occurs, but different behaviour is noticed at 
the zone boundary. Why should this be so? Consider 
any of the directions ~r, zl,A in Pmnb. In each case 
there is at least one operation of type 2, so that the 

^~ A3 A, . phase difference between adjacent planes is (for 27 say) 
Fig. 13. The three antisymmetric representations for the A d i - ~ q g ;  a but the phase difference between atoms related 

rection, the type 2 symmetry is ~1 • a. At the zone boundary 

A C 30A - 9 
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q .  a = n and we have antisymmetry associated with the 
translation a, but the phase difference ½q. a = n/2 does 
not correspond to either a symmetry or an antisym- 
metry operation, in contrast to the PT example. Let us 
take a further example where there are some directions 
without any type 2 operations, where we expect be- 
haviour similar to that in PT. 

Space group Pccm 

The symmetry of this group is shown in Fig. 12. First 
let us dispose of the direction in which there are some 
type 2 symmetry elements. 

A, q along z axis 
Type 1: Diad relating E to 2= 
Type 2: Two glide planes 

(a) relating E and m~ 
(b) relating E and my. 

There are four representations; the symmetric repre- 
sentation A1 and the three shown in Fig. 13. Only E, 
2=, m~ and my appear in this figure. From arguments 
now familiar it is clear that A1 and .42 become degen- 
erate at Z, likewise .43 and .44. 

In the x and y directions there are no operations of 
type 2: 

A, q along y ax& 
Type 1 : Diad relating E and 2y 

Mirror plane relating E and m, 
Glide plane relating E and m~. 

There are four representations shown on the left 
sides of Fig. 14(a), (b), (c), (d), and these involve only 
E, 2 ,  m= and mx. It is obvious from these figures that 
all the related positions lie in the same plane and no 
degeneracies can result at the point Y. In any mode of 
vibration belonging to one of these representations, 
the atoms denoted by J, 2x, my and 2= move always 
obeying the same symmetry but without any fixed phase 
relationship with E, 2 r, m= and mx. Therefore one set 
is omitted from the diagrams, consistent with previous 
practice. 

Y,q along y axis, Iql =n/b 
At this point some symmetry previously of type 3 

becomes operative between the two sets of four posi- 
tions just mentioned, and the extra operations are those 
relating: 

E w i t h J ,  E w i t h 2 x ,  E w i t h m y ,  Ewith2=. 

The four possible symmetries at Y are shown in Fig. 14, 
juxtaposed with the figures for the A representations. 
One aspect of these diagrams is immediately obvious: 
the extra operations appear alternating along the y 
direction between true symmetry and antisymmetry. 
If these extra operations were replaced throughout one 
diagram by the reversed symmetry, in other words true 

symmetry for antisymmetry and vice versa, it is ob- 
vious that the symmetry group is unaltered. This has 

&# 
A 1 g 

(a) 

A 2 Y~ 
(/,) 

o 

! I - 4  

, :iY ! 0--~ 

k 

A,).. 

A 3 Y, 

(c) 

.R- 

t:J T:'" 0 .,~ ~ . 0  

A4 Y~ 
(d) 

Fig. 14. The representations for the zt direction (on the left 
of each diagram) and the Y point. (a) dl and Yt, (b) d2 and 
Y2, (c) z13 and }'3, (d) z14 and Y4. As in Fig. 12 all tetrahedra 
pointing away from the observer are +,  all others-. 



G. S. PAWLEY 593 

been done for the Y1 diagram, and is shown in Fig. 15 
and is denoted Y;. The phase relationship between the 
sets (E,2y, mz, mx ) and (J,2x, mr,2z ) is now reversed, so 
that the atomic motions in the Y1 and Y~ modes are 
quite distinct, yet they are described by the same ab- 
stract symmetry group. 

Throughout Fig. 14, E and m r are moving in phase, 
giving Yz, Y2, Y3 and Y4. In Fig. 15 E and m r are in 
antiphase giving Y~, and a similar antiphase relation- 
ship occurs in modes Y2, Y~ and Y4 not depicted. 

I ~,'I I 

-- | 

# ! t---> 
I 

0 , 

Fig. 15. The Y~ representation. The symmetry operations of 
Y, which were of type 3 for A,, Fig. 14 (a), are here replaced 
by antisymmetry operations and vice versa. The arrange- 
ment of symmetry elements is unchanged though half the 
tetrahedra have changed colour. Again the labelling 4- and 

- follows that of Fig. 12. 

X and X, q along x axis 
The situation in this direction is exactly similar to 

zl and Y, owing to the special choice of space group. 

Shubnikov groups 

It should by now be very obvious that the symmetry 
groups concerned here are those known as Shubnikov 
groups, for which there is considerable literature (Be- 
lov, Neronova & Smirnova, 1957; Shubnikov & Be- 
lov, 1964). 

These references are not essential reading for under- 
standing the present paper. The purpose of this paper 
is however to emphasize that these Shubnikov groups 
do have a use outside the usual field of magnetic crys- 
tal structures. The nomenclature for these groups can 
therefore be used in the description of certain modes 
of vibration. These groups have all been listed and 
named, the usual method of nomenclature is to write 
down the space-group symbol with the antisymmetry 
operations primed. For space group number 49, Pccm, 
there exist twelve Shubnikov groups 

265 Pccm 269 Pc' c' m 273 Pcccm 
266 Pccm 1' 270 Pc'cm' 274 PAccm 
267 Pc' cm 271 Pc' c' m' 275 Pcccm 
268 Pccm' 272 Poccm 276 P1ccm . 

For the present illustrative purpose a fuller notation 
will be temporarily used in order to convey more of 

Table 4. Some compatibilities for the space group Pccm 

¶ See Table 3. 
# x and y permuted. 
§ Shubnikov group number. 
1" Reorientation required to achieve this standard symbol. 

¶ § 

*'2= PcoI-- ZS ~ A1 

* * == 

P C t C , ,  

A 2 

cam 
p2'2 2' 
, c'c m 'J £3 

P2.--7-~' P G 
C t C  m 

£1 P g q  

' ~ '  P 8 
C C m t 

* 2 *= 
c * m 

AI 

* 2 " ~  
C t *  m t 

A 2 

2 2 2j 
Pbccm 

YI 

Pb ncb 
Y2 

PaCCm ¢ 

272 § 

Paban % 

28h 

P C C w-----~ 

p_t_~ 

A3 

A4 

F7 

F5 

"-, "- , "- j F4 

P ~  r2 L~u 

* 2'** 
C t* m 

A3 

* 2'*,, 

C * m t 

A4 

2 212 J 
Pbncm 

Y3 

Pb ccb 
Y4 

{~ mna t 

2 

Pacca 

346 

A C 30A - 9* 
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the space-group information, though it is not proposed 
that the accepted notation be altered. 

A notation for the Pccm example 

We need a symbol to work with which specifies each 
symmetry element of the space group, except of course 
the identity. We can use the full point-group nomen- 
clature, 2/m 2/m 2/m, adding the inversion centre J. 
Thus Pccm becomes 

2 2 2  
p . . . .  J .  

c c m 

This of course is the symmetry of the symmetric mode 
at q = 0 ,  the F point, and corresponds to Shubnikov 
group 265 as listed in Table 4. The space group Pccm 
belongs to the same point group as Pmnb, and there- 
fore the character table for mmm is here applicable. 
All the F modes are labelled in Table 4 in accordance 
with this character table (Table 2). Fig. 16 is the dia- 
gram for F3, Shubnikov group 270, and its relation to 
the left-hand part of the diagram for Y2 [Fig. 14(b)] is 
evident. The three entries below F3 in Table 4 show 
similar relationships with earlier diagrams, F6 with 
Fig. 14(c), F8 with Fig. 14(d) and F7 with Fig. 15. 

Along the A and A directions the symbols for those 
elements of type 3 are replaced by an asterisk, where- 
upon the compatibilities at F are obvious. A small p 
is used for the lattice as the group is now a two-dimen- 
sional or plane group. This is equivalent to the method 
used in the Pmnb example, but now all the information 
of one line of the character table is contained in the 
symmetry symbol. Whereas the use of the character 
table is more appropriate for a computer procedure, 
the symbolic method is easier for the individual worker. 

At the zone boundary point Y, the primitive or- 
thorhombic cell becomes Pb, which denotes edge cen- 
tring antisymmetrically along the y axis. The symmetry 
group becomes 

2(2,21)2 
Pt, (c, n)c(m, b) J 

where the elements missing in A reappear, but the other 
elements can take on one of two possibilities, the alter- 
natives being bracketed together above. The appear- 
ance of the first within the brackets is compatible with 
an unprimed operation in 3, whereas the second is 
compatible with the primed operation. These groups 
and their compatibilities are listed in Table 4. 

All the groups at Y can be described as the direct 
product of the Pb lattice and a true symmetry group. 
This is demonstrated by Fig. 17 in which the true sym- 
metry operations of Y2 are drawn and accordingly only 
the black tetrahedra appear. This is the space group 
Pncb, a re-orientation of Pban, and so the group for 
]"2 is Pbncb, a reorientation of P, ban (number 284). 
Clearly it is better for our purposes to use the non- 
standard orientation with the otherwise standard sym- 
bol Pbncb. 

The 'black and white' nature of Shubnikov groups 
restricts their applicability to those cases where the 
phase relationships are 0 or n. Consequently at the Z 
point it is not possible to classify the symmetries as 
Shubnikov groups; instead the now familiar degen- 
eracies occur. Let us call one mode Zs, denoting the 
mode which is compatible with A1 and hence com- 
patible with the fully symmetric FI. The other mode 

J 

' A ' ; . '  I I I 

1~,~:  I I 

Fig. 16. Diagram for 1"3, the Shubnikov group no. 270, derived 
from Pccm. The arrangement and colour of the tetrahedra 
are exactly the same as in the left side of Y2, Fig. 14 (b), but 
as F3 is for q=0 there is no possibility of antisymmetric 
translational operations. Again the labelling + and - fol- 
lows that of Fig. 12. 

O-  

0 Ipr O i ! > 

0 "[, :i O O O > 

L, ' O ~ 

; $ 
Fig. 17. The true symmetry operations of }'2, Fig. 14 (b). Only 

the black tetrahedra appear here, and again these are labelled 
+ and - as in Fig. 12. This is the space group Pneb. 

z o. .." . . . V /  

, .  • . . . .  
• . . .  

, . . . , q  - ,  

~ ' . . .  ..-" - ~  

Fig. 18. Diagram for the space group pT~2tc viewed down the 
unique axis. 
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may be called ZA without confusion, as in Table 4. 
The compatibilities are easily determined from Fig. 13 
in the usual way. It should be remembered that in all 
cases such as this the modes A do not have the perfect 
plane-group symmetry, and thus the symbols used, 
pcc2, pc'c'2 etc., are not plane-group symbols. 

Primitive space groups from the point group mmm 

With some practice it becomes fairly easy to write 
down the Shubnikov groups and compatibilities, 
though the task of doing this thoroughly is large. What 
now follows is an attempt at complete coverage for a 
small example: the sixteen primitive holosymmetric 
orthorhombic space groups at F, 27, X, 3 ,  Y, A and Z. 
This is made feasible by setting up a large table (Table 
5) for a particular group (Pccm) and relating this to 
a condensed table (Table 6) for the 16 space groups. 

The first column of Table 5 gives the F point sym- 
metries listed in the order of the representations of 
Table 3. It is correct to write a similar column 1 for 
any of the space groups considered with primes in the 
same positions. For every such case the entries for 
lines 5, 6, 7 and 8 are the same as in Table 5, except for 
the entry under F. The entries under Z', zt and A have 
the first, second and third symbol respectively replaced 
by an asterisk; this is required in order to retain 
knowledge of the orientation of the axes. The arrange- 
ment of primes on these entries is the same as under F, 
and again this holds for all the space groups we are 
considering. Therefore these entries are so simple as to 
be considered redundant in Table 6. Consequently the 
useful entries for any space group are the sets of four 
entries under X, Y and Z. Only these appear in Table 
6, and are sufficient for the compilation of a table such 
as Table 5 for any of the 16 space groups. 

Table 5. A summary o f  Table 4 with ~ and X included 

F 
1 Pccm 
2 Pcc'm" 
3 Pc'cm" 
4 Pc'c'm 
5 Pc'c'm" 
6 Pc'crn 
7 Pcc'm 
8 Pccm' 

Z X 
p*cm Poccm 
p* c" m" eacna 
p*cm" P°cca 
p* c" m P.cnm 

As 2 above 
As 1 above 
As 4 above 
As 3 above 

A Y 
pc*m Poccm 
pc*m" Pbccb 
pc'*m" Pbncb 
pc'*m Poncm 

As 3 above 
As 4 above 
As 1 above 
As 2 above 

A Z 
pcc* Zs  
pcc'* ZA 
pc'c* ZA 
pc" c'* g s  

As 4 above 
As 3 above 
As 2 above 
As 1 above 

Concluding example, P421c 

This example is chosen for a variety of reasons. It is 
the space group of adamantane below the plastic crys- 
talline phase transition, which we are studying experi- 
mentally. The group theory has already been analysed 
(Luty, 1971) using the algebraic method, and it is clear 
from the results of  these papers that errors in this 
method are easy to make and difficult to recognise. A 

,,. , , , 
\ . . - "  "-.. /"  
. . . ' \  / ' . .  / 

O. )0.'. ~ • 
• . . / "  \ . . - "  

iiit,/  , , ,  
""0"'" "0 A - • 

(a) (b) 

I ,~ , I l IL r l  

O 
. ~ ,  " . 4  

/ ~  . 

No 
N. 

, .o 

" ° .  4 " N . N  

(c) (d) 

• #  

Fig. 19. The four representations of P7~2~c for q along the unique axis. (a) As, the fully symmetric mode. (b) AA, antisymmetric 
with respect to all improper symmetry operations. (c) Ao, antisymmetric with respect to the diad operations. (d) Ao, degenerate 
with (c). The arrangement of symmetry operations is the same in (c) and (d), except that one is rotated through rr/2. The 
labels +, - ,  ½ + and ½- match those of Fig. 18. 
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Table 6. Symmetries  at X, Y, Z f o r  primitive m m m  space groups 

X Y Z X Y Z X Y Z X Y Z 
Pmmm Pnnn Pcem Pban 

P.mmm P~mmm Pcmmm Xs Ys Zs P.ccm Pbccrn Zs Xs Ys P.ban 
P, maa P~mmb P~mcm Xs Ya Z a P, cna Pbccb Z a Xs Ya P~bnn 
P.mma P ~ b m b  P~cmm Xa Ys Z A P, cca Pbncb Z a X a Ys Pcnan 
P, mam Pbbmrn P~ccm Xa IrA Zs P, cnm Pbncm Zs Xa Ya P~nnn 

Pmma Pnna Pmna Pcca 
Xs P~mma P~rnma Xs Ys Zs Xs Pbmna Zs Xs Pbcca Zs 
Xa Pbmmn Pcmca Xs Y,t Z a Xs Pbmnn Zs X A P~ccn Z A 
Xs Pbbmn P~cma Xa IrA Za Xa P~bnn Za Xs Pbncn Za 
Xa Pbbma Pccca Xa Ys Zs Xa P~bna ZA Xa P, nca Zs 

Pbam Pcen Pbem Pnnm 
Xs Ys P~bam Xs Ys Zs Pabcm Ys Zs Xs :Ys Zs 
Xa Y.4 P~bnm XA Ys Z ,  P, bna YA Zs XA YA ZA 
Xa Ya Pcnam Xs YA ZA P.bca YA ZA Xa Ira ZA 
Xs Ys P~nnm Xa Ya Zs P.bnm Ys Za Xs Ys Zs 

Pmmn Pben Pbea Pmna 
Xs Ys P~mmn Xs Ys Zs Xs Ys Zs Xs Ys Zs 
Xa " Ys P~mcn Xa Y.4 Zs Xa YA Zs Xa Ira ZA 
Xs Ira Pcc mn Xs ITs Z a Xs IrA Z a Xs Y a Zs 
Xa YA Pcccn Xa Ya Za Xa ITs Za Xa ITs Za 

final reason for the inclusion of this example is af- 
forded by the following subtitle. 

Degeneracies along A 

Fig. 18 shows the space-group symmetry viewed down 
the z axis. For phonons with q along the z axis the 
group operations are 

Type 1 : Diad axis (also ~2) 
Type 2: c-glide and n-glide 
Type 3:21 and 4 (not ~2). 

Fig. 19 shows the symmetric mode As and the three 
possible antisymmetric modes, but it is immediately 
obvious that (c) and (d) are equivalent on rotation of 
either by zt/2 about the z axis. These form a degenerate 
pair AD for all values of q along A, leaving the symbol 
Aa for (b). At the point Z there is the customary degen- 
eracy of As and AA because of the ½c difference be- 
tween the two pairs of positions. The same can be 
considered true for the Ao pair as follows. Let a mode 
have representation A~(q), described by Fig. 19(c), then 
the mode belonging to A~(q), Fig. 19(d), is orthogonal 
to the first although degenerate. By time-reversal sym- 
metry these modes are equivalent to A~(-q)  and 
AZ( - q), and on adding a reciprocal-lattice translation 
these are AaD(2n/c--q) and AZo(2n/c-q), respectively. 
At Z, q= 2n/e-q ,  and we have the equivalences 

A~(q)- AZ(2zt/c- q) 
A ~ ( q ) -  A~(2rc/c-q)  . 

This is the first example considered in this paper 
where a degenerate pair occurs for q other than at the 
gone boundary, and it clearly presents a problem for 

diagram interpretation. We have encountered double 
degeneracies already at special points of the Brillouin 
zone, and these often continue in the zone boundary. 
Unfortunately by this stage the limit of usefulness of 
the diagram description is reached and attempts to 
further it appear more and more similar to the analytic 
approach. 

In conclusion it would seem that the diagrammatic 
description of phonon symmetry is very helpful for 
one-dimensional representations which are the majority 
of cases, and moderately helpful for two-dimensional 
representations. However, the complications of higher 
dimensions are forbidding, and one is forced to resort 
to analytic methods. In carrying through the analytic 
methods it is all too easy for errors to be made, and 
so the diagrammatic procedure becomes very useful 
in checking the simpler results. Furthermore, it gives 
a pictorial description of the symmetry of a phonon, 
which is beyond the scope of the analytic method. 
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